كاربرد زئوسنتـتيـىها در كاهش خطرات سوانح طبيعى و مديريت خطرات محيطى

$$
\begin{aligned}
& \text { ضرورت هاى مدير يت بحران در باياى } \\
& \text { طبيعى و راهكارهاى كاهش ريسك }
\end{aligned}
$$

فهر ست مطالب

كليات:

- تعاريف پايه: ريسك، خطر، بحران، عدم قطعيت و آسيب پذيرى - استراتزى هاى ييش از وقوع زلزله: آمادگى، يششگَيرى و روشمهاى افزايش تاب آورى
مطالعه موردى: شهر تهران

خطرناك و ...

Definitions \& Terminologies

What is RISK?
 What is HAZARD?
 What is UNCERTAINTY?
 What is DISASTER?
 What is VULNERABILITY?

- Risk is essentially the level of possibility that an action or activity will lead to a loss or to an undesired outcome. The risk may even pay off and not lead to a loss, it may lead to a gain.
- Hazard is a potentially damaging physical event, phenomenon or human activity that may cause the loss of life or injury, property damage, social and economic disruption or environmental degradation.
- Uncertainty is unpredictable. It has too many unknown variables which do not even allow one to estimate as to what is going to happen.
- Disaster is a sudden, calamitous event that seriously disrupts the functioning of a community or society and causes human, material, and economic or environmental losses that exceed the community's or society's ability to cope using its own resources. Though often caused by nature, disasters can have human origins.
- Vulnerability is the inability to resist a hazard or to respond when a disaster has occurred. For instance, people who live on plains are more vulnerable to floods than people who live higher up.

Risk $=$ Hazard \times Vulnerability

Principal earthquake hazards, expected effects and hazard-reduction techniques

\(\left.$$
\begin{array}{l|l|l}\text { Hazard } & \text { Effects } & \text { Hazard-Reduction Techniques } \\
\hline \text { Ground Shaking } & \text { Damage or collapse of structures } & \begin{array}{l}\text { Make structures seismically resistant, } \\
\text { secure heavy objects }\end{array} \\
\begin{array}{l}\text { Surface Fault } \\
\text { Rupture } \\
\text { Regional Subsidence } \\
\text { Ground tilting; flooding and loss } \\
\text { of head in gravity-flow structures }\end{array} & \begin{array}{l}\text { Create buffer zones, build dikes, } \\
\text { restrict basements, design tolerance } \\
\text { for tilting }\end{array} \\
\text { Liquefaction } & \begin{array}{l}\text { Differential settlement, ground } \\
\text { cracking, subsidence, downslope } \\
\text { movement of earth material }\end{array} & \begin{array}{l}\text { Treat soil, design structural solutions } \\
\text { Damage due to impact }\end{array} \\
\text { Landslides } & \begin{array}{l}\text { Damage to structures, loss of } \\
\text { foundation support } \\
\text { Inundation, drowning, erosion }\end{array} & \begin{array}{l}\text { Avoid hazard, remove or stabilize }\end{array}
$$

rock, protect structures

Avoid hazard, remove material,

stabilize slopes\end{array}\right\}\)| Avoid hazard, flood-proof and/or |
| :--- |
| strengthen structures, elevate |
| buildings |

All the regulations pointed out in codes and criteria shall be met.

Risk management process

Disaster Risk Management

Involves mitigations to the threats resulted from the risk in order to either avoiding the risk, or reducing the risk or transferring the risk.

Preparedness \& Prevention OBJECTIVES

Note: It is not a comprehensive list and is not in order of priority.

1. Increase earthquake awareness and education.
2. Improve emergency response and recovery.
3. Improve the seismic safety of buildings and infrastructure.
4. Improve essential geoscience information.
5. Assess earthquake risk.

Incorporate earthquake education in school curricula
Output: Multi-level curriculum for earthquake education in all public schools. Outcome: All students are provided with earthquake science and safety training as a part of their regular education.

Disclose geologic hazards in real-estate transactions
Output: Homebuyers are made aware of geologic hazards at a property prior to making a purchase.
Outcome: Homebuyers are more informed in their decisions.

Implementation

Accurate maps showing geologic hazards are useful to inform sellers, real-estate agents, and local governments of potential hazards, but aren't necessary to implement disclosure if only known hazards or damage from hazards are to be disclosed.

Establish community emergency response teams statewide (CERTs).
Output: Trained volunteer community emergency response teams exist statewide.
Outcome: Reduce life, property, and environmental loss by providing more immediate response in a disaster.
 RESPONSE TEAM

Improve the post-earthquake operational status of essential service buildings. Output: All essential government services buildings are identified. Buildings constructed previously are retrofitted or relocated as needed, to meet standards that will allow them to remain operational.
Outcome: The ability to provide uninhibited disaster relief services.

Objective 4: Improve essential geoscience information

Strategy1: Reduce earthquake losses by mapping and identifying geologic hazards.
Output: Hazard maps for all earthquake-prone urban areas.
Outcome: Development and management are safer, more reasoned, and more costeffective.

Strategy2: Perform geologic-hazards investigations for critical public facilities. Output: Geologic-hazard investigations are performed for all new critical public facilities.
Outcome: Critical facilities will not be sited in hazardous areas and, in the event of a natural disaster, facilities that are needed for emergency response will remain intact.

Strategy3: Ensure design professionals and building officials are kept current on relevant geoscience information.
Output: Periodic meetings of geoscientists, engineers, and building officials to discuss implications of geoscience information to building safety.
Outcome: Up-to-date, reliable geoscience information is used to guide the safe and economical earthquake-resistant design of new buildings.

Strategy4: Determine appropriate seismic criteria and procedures for evaluating performance of existing dams.
Output: Guidelines for seismic safety assessments of existing dams.
Outcome: Uniform, state-of-the-art assessments of seismic safety of dams.

Strategy5: Reduce earthquake-induced liquefaction risk to highway structures. Output: Identify all hazardous bridges; generate a plan for mitigation of each structure.
Outcome: Highway bridges are safer in the event of earthquake-induced liquefaction.

Strategy6: Determine appropriate seismic design coefficients for highway bridges. Output: Calculate and incorporate new seismic design coefficients in design work. Outcome: (1) Ensure that the best available information is used for the safe and economical design of the new bridges. (2) Prevent the need for retrofit of the bridges in the near future. (3) Reduce bridge damage in an earthquake.

SDAP E Example: Plan and Elevation

5-Span continuous \& straight. CIP Concrete box girder. Two columns integral bent. CIP concrete piles with steel casing.

Strategy7: Monitor faults using Global Positioning System (GPS) measurements. Output: Regular monitoring of a network of GPS benchmarks.
Outcome: Strain build up and ground deformation associated with faults are understood on a very detailed level, allowing more accurate estimation of the likelihood of large earthquakes and accompanying hazards.

Earthquake Early Warning Basics

1 In an earthquake, a rupturing fault sends out different types of waves. The fast-moving P-wave is first to arrive, but damage is caused by the slower S -waves and later-arriving surface waves.

2 Sensors detect the P-wave and immediately transmit data to an earthquake alert center where the location and size of the quake are determined and updated as more data become available.

3 A message from the alert center is immediately transmitted to your computer or mobile phone, which calculates the expected intensity and arrival time of shaking at your location.

پر تلفات ترين و حساس ترين نقاط تهران هنگًام زلزله

ساختمان مدرن اسناد ملى ايران دقيقا روى گسل بزر گی سيد خندان و در فاصله . .

 خندان قرار دارد.
ساختمان بلند مرتبه روزنامه اطلاعات در كنار گسل در زير بر بزر گراه جهان كان كودك واقع است

 ساختمان بلند مرتبه بنياد مستضعان

 گسل عمود بر آن قرار دارند.

- چل معلق پاركى وى كه در تقاطع خيابان وليعصر و بزر گراه چچمران واقع است دقيقا روى گسل محموديه قرار دارد - پپ بزرگراه صدر روى خيابان دكتر شريعتى گسل قيطريه را قطع كرده است.

Multi-Hazard Early Warning System (MHEWS)

Schematic representation of the components of a MHEWS (here for flood for example)

The End Thank you!

Any question; please contact me via:

b.behnam@aut.ac.ir
behrouz.behnam@uqconnect.edu.au

